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The population haplotype inference problem based on the pure parsimony criterion (HIPP)
infers an m � n genotype matrix for a population by a 2m � n haplotype matrix with the
minimum number of distinct haplotypes. Previous integer programming based HIPP solu-
tion methods are time-consuming, and their practical effectiveness remains unevaluated.
On the other hand, previous heuristic HIPP algorithms are efficient, but their theoretical
effectiveness in terms of optimality gaps has not been evaluated, either. We propose two
new heuristic HIPP algorithms (MGP and GHI) and conduct more complete computational
experiments. In particular, MGP exploits the compatible relations among genotypes to
solve a reduced integer linear programming problem so that a solution of good quality
can be obtained very quickly; GHI exploits a weight mechanism to selects better candidate
haplotypes in a greedy fashion. The computational results show that our proposed algo-
rithms are efficient and effective, especially for solving cases with larger recombination
rates.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In the post-genomic era, the development of a full haplotype map has high priority since Helmuth [1] suggests that the
knowledge about the genetic constitution of an individual chromosome called haplotypes can be applied in linkage disequi-
librium, inference of population evolutionary history, disease diagnosis, and customization of treatment for each individual.
The haplotype is a sequence of closely linked single nucleotide polymorphisms (SNPs) in one copy of a chromosome. There
are two haplotypes in a pair of chromosomes in all diploid organisms. Since the collection of haplotypes data requires a huge
amount of cost and time, the data for genotypes rather than haplotypes are collected. A genotype is the description of one
conflated pair of haplotypes. The computational problem to construct the haplotypes from genotype data is called haplotyp-
ing. Two categories of haplotyping problems are investigated in literature: one category is concerned with haplotyping a sin-
gle individual based on the data and methodology of shotgun sequence assembly [2–4], and the other category is concerned
with haplotyping a population [5,6]. We study the latter category in this paper.

Clark [5] first brings up the population haplotype inference (PHI) problem to infer haplotypes from genotypes for a group
of individuals. He also gives an inference rule, assuming the genotypes with zero or one ambiguous sites contain the fre-
quently observed haplotypes in the population. After that, many PHI solution methods and problems are proposed, including
the estimation-maximization (EM) algorithm by Excoffier and Slatkin [7], Long et al. [8], and Hawley and Kidd [9], Bayesian
method by Stephens et al. [10], Niu et al. [11] and Stephens and Donnelly [12], maximum resolution (MR) problem by
Gusfield [6], perfect phylogeny haplotype (PPH) problem by Gusfield [13], and PHI problem that satisfies the pure parsimony
. All rights reserved.
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criterion (i.e. called the HIPP problem) proposed by Gusfield [14]. In this paper, we focus on solving the HIPP problem, where
the number of distinct haplotypes for resolving a given genotype matrix is minimized.

Suppose we are given m genotype vectors, each has length n, and denote this set of vectors as an m � n genotype matrix
G = [gi,j]. Each row in G corresponds to a genotype data for one individual, while each column stands for one SNP. The element
gi,j is the genotype data for individual i at locus j. Let G = {g1,g2, . . . ,gm} be the set of all rows in G and gi = gi,1gi,2� � �gi,n denote
the genotype data for individual i. Every element gi,j has value 0, 1, or 2 depending on whether the ith individual is homo-
zygous wild type, homozygous mutant, or heterozygous, respectively, at the jth SNP. Any element gi,j in G is said to be re-
solved if its value is 0 or 1, and ambiguous if its value is 2. Suppose ha and hb are two 1 � n haplotype vectors. We say ha

and hb resolve a genotypegi, denoted by gi = ha � hb, if and only if ha,j = hb,j = gi,j for each gi,j 2 {0, 1} and ha,j + hb,j = 1 for each
gi,j = 2. See Fig. 1 for an example. In this case, we say ha (or hb) a candidate (or explaining) haplotype for gi, {ha, hb} a candidate
(or explaining) haplotype pair for gi, and ha (or hb) the conjugate (or complementary) haplotype for hb (or ha) in the pair {ha,
hb}.

By definition, the number of candidate haplotype pairs equals to 2j�1 for a genotype that contains j ambiguous sites (i.e.
heterozygous SNPs). Although there are many candidate haplotype pairs for resolving a given genotype matrix, the real-
world haplotype pairs are induced by a very few amount of distinct haplotypes. For example, Drysdale et al. [15] identify
13 SNPs in the human b2 AR gene, which has 213 = 8192 possible combinations. However, only 10 among those 8192 candi-
date haplotypes are related to asthmatic cohort. Thus Gusfield [14] suggests a combinatorial optimization problem called the
haplotype inference based on pure parsimony (HIPP) which seeks the minimum amount of distinct haplotypes to resolve a
given genotype matrix.

The objective of the HIPP problem is to find a 2m � n haplotype matrix, in which the ith row (i.e. gi) in the genotype ma-
trix is resolved by the (2i � 1)th and the 2ith rows (i.e. gi = h2i�1 � h2i) in the haplotype matrix, and the number of distinct
haplotypes is minimized. See Fig. 1 for an example. Given the genotype matrix G = {202, 021, 212}, there are 2, 1, and 2 can-
didate haplotype pairs to resolve genotype 1, 2, and 3, respectively. Furthermore, there are 6, 5, 5, or 4 distinct haplotypes if
we select (p1, p3, p4), (p1, p3, p5), (p2, p3, p4) or (p2, p3, p5) to resolve G, respectively. Using the pure parsimony criterion, (p2 , p3,
p5) will be selected to resolve all the genotypes since this combination induces the minimum number of distinct candidate
haplotypes.

The HIPP problem is APX-hard, as shown by Lancia et al. [16]. The HIPP solution methods in the literature are either based
on the mathematical programming techniques such as integer linear programming (ILP) by Gusfield [14] and Brown and
Harrower [17] and quadratic integer programming by Huang et al. [18] and Kalpakis and Namjoshi [19], or the heuristic algo-
rithm by Li et al. [20]. In particular, Gusfield [14] gives the first ILP formulation called RTIP to model the HIPP problem. For
each genotype, RTIP first enumerates all the candidate haplotype pairs and then gives constraints to ensure that exactly one
among all the possible pairs for each genotype is selected. Take the 3-genotype case in Fig. 1 for example: for genotype
g1 = 202, we enumerate its two candidate haplotype pairs p1 = 000 � 101 and p2 = 001 � 100, and create two binary variables
y1,1 and y1,2 to respectively represent whether p1 or p2 is selected in the HIPP solution; similarly, y2,1 associated with
p3 = 001 � 011 for g2 = 021, as well as y3,1 and y3,2 corresponding to p4 = 010 � 111 and p5 = 011 � 110 for g3 = 212 are also
created. We then generate eight binary variables x1,x2, . . . ,x8 to respectively represent whether to select the constituted hap-
lotypes 000, 101, 001, 100, 011, 010, 111, and 110 in the optimal solution. Then, the RTIP formulation for this example is as
follows:
min x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8

s:t: y1;1 þ y1;2 ¼ 1; y2;1 ¼ 1; y3;1 þ y3;2 ¼ 1;

y1;1 6 x1; y1;1 6 x2; y1;2 6 x3; y1;2 6 x4; y2;1 6 x3;

y2;1 6 x5; y3;1 6 x6; y3;1 6 x7; y3;2 6 x5; y3;2 6 x8;

x1; . . . ; x8; y1;1; y1;2; y2;1; y3;1; y3;2 2 f0;1g;
where the objective function minimizes the number of selected candidate haplotypes, as long as one candidate haplotype
pair is selected for each genotype, which forces its constituted candidate haplotypes to be selected as well. The RTIP
formulation thus contains potentially exponential number of variables and constraints with respect to the number of SNPs.
Fig. 1. A PHI example by pure parsimony criterion.
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Although RTIP is potentially exponential-sized, it is practically faster than PolyIP, the polynomial-sized ILP formulation pro-
posed by Brown and Harrower [17]. Wang and Xu [21] give a branch and bound algorithm called HAPAR. HAPAR also takes a
lot of computational time since it tries out all the combinations to solve the HIPP problem. RTIP, PolyIP, and HAPAR all cal-
culate the exact optimal solution for the HIPP problem, but they usually consume a lot of computational resources and time,
and may not be suitable for solving large-scale HIPP problems.

Recently, Boolean Satisfiability (SAT) has been proposed for solving the HIPP problem with success. According to Lynce
and Marques-Silva [22,23], their SAT-based method called SHIPs can calculate exact optimal solutions for large-scale HIPP
problems with sizes up to 50 genotypes and 100 sites, which are often unsolvable by RTIP, PolyIP, and HAPAR. Techniques
such as local search (see Lynce et al. [24]) have also been used to improve the efficiency of SHIPs. Furthermore, Graca et al.
[25,26] propose Pseudo-Boolean Optimization (PBO) models called PolyPB and its reduced version called RPoly, based on the
PolyIP model. RPoly has smaller size and consistently better efficiency than PolyPB. Their experiments indicate RPoly is the
state-of-the-art method since it can solve more large-scale HIPP cases and is also often faster than SHIPs. Although these
optimal HIPP algorithms give the theoretical optimal HIPP solutions, whether these optimal solutions also have good prac-
tical effectiveness in terms of small error rates (i.e. the proportion of genotypes whose inferred haplotype pairs are different
from the original ones) requires further evaluation.

Heuristics are important in solving the PHI problems since the methodologies for obtaining the exact optimal solutions
are not only theoretically difficult but also time-consuming in practice. Based on different integer quadratic programming
formulations, Huang et al. [18] give an approximation algorithm called SDPHapInfer, and Kalpakis and Namjoshi [19] pro-
pose another heuristic algorithm to solve their integer quadratic programming HIPP formulation. SDPHapInfer performs well
for smaller cases but its error rates increase dramatically for larger cases (see Section 4 for details). The heuristic algorithm
by Kalpakis and Namjoshi [19] requires further evaluation. On the other hand, the parsimonious tree growing heuristic algo-
rithm called PTG by Li et al. [20] is very fast, but its theoretical effectiveness in terms of optimality gap (i.e. the difference in
the number of distinct candidate haplotypes used, compared with the optimal solution) remains to be evaluated.

To design an efficient algorithm that can give a good solution to solve the HIPP problem, this paper investigates the com-
patible relations between genotypes. Based on the compatible relations between genotypes, we give estimates on the upper
and lower bounds for the optimal HIPP objective value. Such compatible relations can also be used to reduce the solution
space of Gusfield’s formulation (RTIP) and obtain good solutions faster. Our first heuristic algorithm called MGP identifies
common haplotypes for any two compatible genotypes, and then formulates an integer linear program to resolve the geno-
types by those common haplotypes. MGP effectively reduces the solution space of the RTIP formulation so that it can obtain a
good solution in a much shorter time than the original RTIP.

Since the HIPP problem seeks the minimum number of haplotypes to resolve a given genotype matrix, among all the can-
didate haplotypes, one that can resolve more genotypes should be more likely to appear in the solution since it may reduce the
number of required haplotypes. To select such haplotypes, we design our second greedy heuristic algorithm called GHI by
exploiting some weight mechanisms based on biological intuitions for each candidate haplotype and candidate haplotype pair
so that the algorithm will select a candidate haplotype that seems to have higher probability to be in the optimal solution.

The remaining of this paper is organized as follows. Section 2 introduces the notations and compatibility graph used for
our algorithms. In Section 3, we propose two new heuristic algorithms to solve the HIPP problem based on mathematical
properties and biological insights. Several numerical experiments on both real-world and simulated genotype data for dif-
ferent formulations and algorithms are conducted and summarized in Section 4. Section 5 concludes the paper and suggests
future research directions.

2. Preliminaries

Suppose f is a 1 � n row vector whose elements are either 0, 1, or 2 (e.g. a genotype or a haplotype). We say fa and fb are
compatible to each other, denoted as fa � fb, if and only if (fa,j, fb,j) R {(0,1), (1,0)} for each column j = 1, . . . ,n. On the other
hand, fa and fb are conflicting (or incompatible) to each other, if and only if there exists a column j such that fa,j + fb,j = 1.
The compatible relation is reflexive and symmetric, but not transitive.

A compatibility graph GC (see Fig. 2(a)) for a given genotype matrix G can consist of a set of m nodes and ~q arcs where each
node corresponds to a genotype in G and each arc connects two compatible genotypes. Similarly, one may define a conflicting
graph GC ¼ Km n GC (see Fig. 2(b)), where Kmrepresents a complete graph of m nodes.

Lemma 1. (a) Two conflicting genotypes share no common candidate haplotypes. (b) Let A(GC) denote the minimum number of
arcs that covers all nodes in GC. Then 3A(GC) is an upper bound for the HIPP optimal objective value. (c) Let vðGCÞ denote the
minimum number of node colors required for GC such that adjacent nodes in GC have different colors. Then 2vðGCÞ is a lower bound
for the HIPP optimal objective value.
Proof

(a) By definition, if ga conflicts gb, there must exist a site j such that (ga,j, gb,j) 2 {(0,1), (1,0)}. Since no haplotype on site j
can have two different values, there exists no common candidate haplotypes to resolve ga and gb at the same time.
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(b) Selecting an arc (ga, gb) in GC can be thought as resolving the compatible genotype pair ga and gb using one of their
common candidate haplotypes. Therefore, a selected arc in GC will incur at most three haplotypes which provide a fea-
sible solution that resolves all the genotypes with an estimated upper bound no more than 3A(GC) on the optimal
objective value.

(c) Since the nodes of the same color may at least require 2 candidate haplotypes, thus there are at least 2vðGCÞ candidate
haplotypes when all the nodes of the same color are resolved by the same haplotype pairs. h

Lemma 1(a) suggests a way to reduce an HIPP problem to several independent subproblems where each subproblem cor-
responds to a smaller HIPP problem whose genotypes form a component in GC. Furthermore, the compatible relations can
help to reduce the solution space of the RTIP model proposed by Gusfield [14]. In particular, one only requires enumerating
those candidate haplotypes compatible with more than one genotype for the RTIP model, since those conflicting candidate
haplotypes will increase the objective value and thus will never appear in the optimal solution, unless that genotype corre-
sponds to an isolated node in GC, in which case we can solve it separately.

The compatible relations also provide a base for designing some intriguing heuristic algorithms that give good HIPP solu-
tions. For example, Lemma 1(b) can be used to improve the objective upper bound from 2m to be 3A(GC) by solving an arc
covering problem on GC which seeks A(GC), the minimum number of arcs that covers all the nodes. Similarly, Lemma 1(c)
implies 2vðGCÞ can be used to estimate the lower bound for the HIPP objective value. These estimated upper and lower
bounds for the HIPP objective value may still be too loose. Similar compatible relations are also independently discussed
by Lynce and Marques-Silva [23] and Lynce et al. [24], where they propose several techniques, different from ours, to im-
prove the lower bounding procedures for their SHIPs method. In the next section, we introduce two heuristic algorithms that
seek a good solution efficiently in practice based on the compatible relations.

3. Proposed heuristics

In this section, we give two heuristics to solve the HIPP problem. The first one exploits the compatible relations between
genotypes and the second one selects popular haplotypes that can resolve more genotypes in a greedy fashion.

3.1. The method of merged genotype pairs (MGP)

Based on the compatible genotype pair relations, the common haplotypes for any two compatible genotypes can be easily
identified and used to give a feasible solution to the HIPP problem. First, we construct a merged genotype pair, denoted as
mg~k;

~k ¼ 1; . . . ; ~q, for each compatible genotype pair (ga, gb) as follows:

1. mg~k;j :¼ ga;j , if ga,j = gb,j 2 {0, 1, 2}, for j = 1, . . . ,n.
2. mg~k;j :¼ 1 or 0, if (ga,j, gb,j) 2 {(1,2), (2,1)} or (ga,j, gb,j) 2 {(0,2), (2,0)}, respectively, for j = 1, . . . ,n.

After conducting the pairwise comparisons, all the ~q distinct merged genotype pairs MGðGÞ :¼ fmg~k : ~k ¼ 1; . . . ; ~qg for a
given genotype matrix G can be identified in O(m2n) time. For each gi, we use IVMGðiÞ :¼ fmg~k : ga � gi ¼ mg~k 8ga 2 Gg to
record the set of its compatible merged genotype pairs.

Similar to the minimum arc covering technique for estimating the upper bound that selects the minimum number of arcs
(i.e. compatible relations) in GC to cover all the nodes (i.e. genotypes), our first heuristic algorithm, called as MGP, selects the
minimum number of merged pairs in GC to cover all the nodes. Since a merged pair may contain more than one arc (i.e.
compatible relation) in GC, the objective value of MGP tends to be better than the objective value obtained by the minimum
arc covering heuristics for upper bound as proposed in Lemma 1(b).

In particular, for each component ĉ in GC, we formulate an integer linear programming problem, denoted as IPMGP1ðĉÞ, to
select a set of minimal number of merged genotype pairs in GC that covers all the nodes in component ĉ. Suppose these
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selected merged genotype pairs form a subgraph of GC, denoted as Gmgĉ . Then, we enumerate all the candidate haplotypes for
each selected merged genotype pair, and formulate another integer linear programming problem, denoted as IPMGP2ðĉÞ,
which corresponds to the Gusfield’s formulation (RTIP) on the subgraph Gmgĉ . Thus the optimal solution of IPMGP2ðĉÞ gives
a set of minimum number of distinct haplotypes that resolves all the genotypes covered in complement ĉ from those can-
didate haplotypes that can resolve the selected merged genotype pairs defined in Gmgĉ . Since Gmgĉ is a spanning subgraph of ĉ
in GC, in a sense MGP tries to compute a good feasible solution from a reduced solution space of the original problem. The
final solution is obtained by the union of the solutions obtained for each component in GC. The steps of MGP are described as
follows:

Step 1. Conduct pairwise comparison to obtain MG(G) and IVMG(i) for each genotype gi, i = 1, . . . ,m.
Step 2. For each component ĉ in GC, formulate IPMGP1ðĉÞ, and then use its optimal solution to formulate IPMGP2ðĉÞ
Step 3. Obtain the solution of MGP by taking the union of the optimal solution of IPMGP2ðĉÞ for each component ĉ.

Without loss of generality, suppose GC only contains one component ĉ. For each merged genotype pair mg~k, assign a bin-
ary variable ~xk to represent whether mg~k is selected (i.e. ~x~k ¼ 1) to resolve a genotype that it covers, or not (i.e. ~x~k ¼ 0). The
IPMGP1ðĉÞ can be formulated as follows:
min
X~q

~k¼1

~x~kðIPMGP1ðĉÞÞ

s:t:
X

~k2arg IVMGðiÞ

~x~k P 1; 8i ¼ 1; . . . ;m;

~x~k 2 f0;1g; 8~k ¼ 1; . . . ; ~q:
The optimal solution for IPMGP1ðĉÞ can be used to form a solution space for IPMGP2ðĉÞ. In particular, we enumerate all the
candidate haplotypes for the selected merged genotype pairs obtained from IPMGP1ðĉÞ, and then use them to construct
IPMGP2ðĉÞ, which is a reduced RTIP formulation.

Take the genotype G = {012, 221, 210, 220} in Fig. 3 for example. After conducting 4(4 � 1)/2 = 6 pairwise genotype com-
parisons, we obtain four compatible relations and three merged genotypes: mg1 = 011, mg2 = 010 and mg3 = 210. The com-
patibility graph for this example contains exactly one component and we can formulate IPMGP1ðĉÞ as follows:
min ~x1 þ ~x2 þ ~x3

s:t: ~x1 þ ~x2 P 1; ~x1 P 1; ~x2 þ ~x3 P 1;
~x1; ~x2; ~x3 2 f0;1g:
Multiple optimal solutions ~x�1; ~x
�
2; ~x

�
3

� �
2 fð1;1;0Þ; ð1; 0;1Þg exist for this example, which may lead to different results. The

first optimal solution shows that G can be resolved by five distinct candidate haplotypes {010, 011, 101, 110, 100} using
mg1 and mg2, since (g1, g2, g3, g4) = (010 � 011, 011 � 101, 010 � 110, 010 � 100). On the other hand, the second optimal
solution shows that mg1 and mg3can be further expanded to a set of three haplotypes {011, 010, 110}, and then a set of
six candidate haplotypes {010, 011, 101, 110, 100, 000} can be derived to resolve G. Let {p1, p2, p3, p4, p5} denote the set
of candidate haplotype pairs {010 � 011, 011 � 101, 010 � 110, 010 � 100, 110 � 000} derived from those six candidate
Fig. 3. An example of compatible genotype pairs.
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haplotypes. Since g4 can be resolved by more than one haplotype pair (i.e. p4 and p5), we have to form the second ILP IPMGP2ðĉÞ
to decide the candidate genotype pairs that use fewest number of distinct haplotypes as follows:
min x1 þ x2 þ x3 þ x4 þ x5 þ x6

s:t: y1;1 ¼ 1; y2;1 ¼ 1; y3;1 ¼ 1; y4;1 þ y4;2 ¼ 1;

y1;1 6 x1; y1;1 6 x2; y2;1 6 x2; y2;1 6 x3; y3;1 6 x1;

y3;1 6 x4; y4;1 6 x1; y4;1 6 x5; y4;2 6 x4; y4;2 6 x6;

x1; x2; x3; x4; x5; x6; y1;1; y2;1; y3;1; y4;1; y4;2 2 f0;1g;
where the binary variables x1, x2, x3, x4, x5 and x6 represent whether the candidate haplotype 010, 011, 101, 110, 100, and 000
will be selected (i.e. x = 1) in the optimal solution or not (i.e. x = 0), and y1,1, y2,1, y3,1, y4,1, and y4,2 represent whether the can-
didate haplotype pair p1, p2, p3, p4, and p5 is selected (i.e. y = 1) to resolve its corresponding genotype or not (i.e. y = 0).

In summary, MGP is a heuristic algorithm that exploits the compatible relations of genotypes. A set of merged genotypes
are produced by merging any two compatible genotypes. An ILP is formulated which seeks the minimum number of merged
genotypes that can resolve all the genotypes. A second ILP based on Gusfield’s RTIP formulation is then formulated using the
candidate haplotypes for the selected merged genotype pairs to resolve all the genotypes. Since MGP can reduce the solution
space of HIPP, it can give a good feasible solution for a large-scale HIPP problem that would be unsolvable in a reasonable
time using the original RTIP formulation. We have implemented MGP and evaluated its performance in the next section.

3.2. The greedy heuristic inference method (GHI)

The pure parsimony criterion implies a popular candidate haplotype that can resolve more genotypes should be more
likely to appear in the HIPP solution, since its appearance reduces the number of required haplotypes. To select popular hap-
lotypes, our second greedy heuristic algorithm, called as GHI, gives larger weight for a candidate haplotype compatible with
more genotypes, and then selects those haplotypes of larger weights.

In addition to the popularity intuition, we also take the inference rule proposed by Clark [5] into consideration to design
the weight mechanism for each candidate haplotype. Since Clark’s rule tries to infer heterozygote (i.e. genotypes containing
more than one ambiguous site) from homozygote (i.e. genotypes with zero or one ambiguous site), we think those genotypes
with fewer ambiguous sites should contain candidate haplotypes that are more likely to be used for resolving the genotype
matrix. Therefore, the candidate haplotypes associated with a genotype containing fewer ambiguous sites should be as-
signed larger weights. Based on these weight mechanisms for each haplotype, GHI selects candidate haplotype pairs of larger
weights to resolve all the genotypes.

Denote H(G) and HP(G) to be the set of candidate haplotypes and the set of candidate haplotype pairs that can resolve G,
respectively. Let jH(G)j = q and jHPðGÞj ¼ q̂. For each gi, we define CH(i) :¼ {ha: ha � gi, "ha 2 H(G)} to be the set of its candidate
haplotypes, and CHP(i) :¼ {(ha,hb): gi = ha � hb, "ha, hb 2 H(G)} to be the set of its candidate haplotype pairs. Therefore,S

i=1, . . . , mCH(i) = H(G) and
S

i = 1, . . . , mCHP(i) = HP(G) for each CH(i) � H(G) and CHP(i) � HP(G). For each candidate haplotype
hk, k = 1, . . . ,q, we define IG(k) :¼ {gi: hk � gi, "gi 2 G} to be the set of genotypes compatible with hk.

Let ntwo(i) and gw(i) denote the number of ambiguous sites and the weights associated with gi, respectively for each

i = 1, . . . ,m. By setting gwðiÞ ¼
Pm

j¼1ntwoðjÞ
� �

=ntwoðiÞ for each i = 1, . . . ,m, we assign a larger weight for a genotype with fewer

ambiguous sites. Note that for each genotype of zero ambiguous site, it can be resolved by a unique candidate haplotype pair
(by the same haplotype), similar to a genotype of single ambiguous site. Therefore, we set ntwo(i) to be one for each genotype
i of zero or one ambiguous site. Then, we calculate the weight for each candidate haplotype hk, k = 1, . . . ,q, by

hwðkÞ ¼
P

i2arg IGðkÞgwðiÞ. The weight for each haplotype pair hpwðk̂Þ equals to hwðk̂aÞ � hwðk̂bÞ for each k̂ ¼ 1; . . . ; q̂, if the

k̂th candidate haplotype pair is composed by the k̂ath and the k̂bth candidate haplotypes. Finally, our GHI algorithm selects
the candidate haplotype pair that has the maximum pair weight to be the explaining pair for each gi.

Besides the proposed weight mechanism for gw(i), hw(k), and hpwðk̂Þ, we have also tested other weight mechanisms such
as equal weight, or linear incremental weight for gw(i); or using addition rather than multiplication on the weights of the
constituted haplotypes for hpwðk̂Þ. However, it turns out our proposed weight mechanism has the best performance. We give
two points to explain the advantages of our proposed weight mechanism. First, the haplotype pair weight hpwðk̂Þ can be
thought as the frequency used in the EM algorithms by Excoffier and Slatkin [7], Long et al. [8], and Hawley and Kidd [9],
where the idea of frequency is treated as a concept of probability. Therefore, the multiplication on the weights of the con-
stituted haplotypes represents the probability for that candidate haplotype pair using those two constituted haplotypes.
Similar to the EM algorithm which finds the haplotype probabilities to optimize the probability of the entire population, here
we select the haplotype combinations with the largest estimated probability. Second, using hwðk̂aÞ � hwðk̂bÞ instead of
hwðk̂aÞ þ hwðk̂bÞ to calculate hpwðk̂Þ for each haplotype pair provides a better tie-breaking strategy.

GHI algorithm is straightforward and contains five procedures:

Step 1. Construct H(G), HP(G) by CH(i), CHP(i) for each gi 2 G. Construct IG(k) for each candidate hk 2 H(G).

Step 2. CalculategwðiÞ ¼
Pm

j¼1ntwoðjÞ
� �

=ntwoðiÞ for each gi 2 G using ntwo(i).
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Step 3. Calculate hwðkÞ ¼
P

i2arg IGðkÞgwðiÞ for each candidate haplotype hk 2 H(G).
Step 4. Calculate hpwðk̂Þ ¼ hwðk̂aÞ � hwðk̂bÞ for each candidate haplotype pair hpk̂ ¼ ðhpk̂a

;hpk̂b
Þ 2 HPðGÞ.

Step 5. Select the candidate haplotype hpi⁄ 2 CHP(i) such that i� ¼ arg maxhpk̂
fhpwðk̂Þg for each genotype gi 2 G.

Take Fig. 4 for example. Given G = {202, 021, 212}, three candidate haplotype pairs: one of p1 and p2, p3 itself, and one of p4

and p5, have to be selected to resolve g1, g2, and g3, respectively. Since there are totally five ambiguous sites in G, (gw(1),
gw(2), gw(3)) = (2.5, 5, 2.5). The weights for haplotypes 000, 101, 001, 100, 011, 010, 111, and 110 are 2.5, 2.5, 7.5, 2.5,
7.5, 2.5, 2.5, and 2.5, respectively. The weighs for candidate haplotype pairs p1, p2, p3, p4 and p5 become 6.25, 18.75,
56.25, 6.25, and 18.75, respectively. Then, GHI will select p2, p3, and p5 to resolve g1, g2, and g3, respectively.

Suppose there are totally jH(G)j = q candidate haplotypes and jHPðGÞj ¼ q̂ ¼
Pm

i¼12ntwoðiÞ�1 candidate haplotype pairs. GHI
takes Oðq̂þmnþ qmÞ time and O(2n) storage space using array to store H(G) and HP(G). Or, it takes Oðq̂3 þmnþ qmÞ time
and Oðq̂Þ storage space using linked list to store H(G) and HP(G). The efficiency of GHI thus depends very much in the total
number of ambiguous sites that G contains. Note that the RTIP formulation by Gusfield [14] and the SDPHapInfer algorithm
by Huang et al. [18] also require to enumerate all the necessary candidate haplotypes as does in the Step 1 of GHI, thus these
three methods all consume similar time and storage space in their first step. However, considering the computational efforts
afterwards, GHI only conducts simple calculation on weights, whereas RTIP has to solve an ILP problem and SDPHapInfer has
to solve an SDP (i.e. semi-definite programming) problem. Therefore GHI should consume less computational time than RTIP
and SDPHapInfer. Although GHI gives no theoretical guarantee on its solution quality, it includes the concept of Clark’s rule
and simple greedy intuition to obtain good solutions efficiently. Moreover, the practical performance of GHI has been shown
to be good (see Section 4), especially for cases with recombination.

4. Computational experiments and discussion

This section summarizes the computational experiments for several HIPP algorithms. After introducing the experimental
settings, one biological genotype dataset (i.e. b2AR gene) and several simulated genotype datasets will be used for the
experiments.

4.1. Settings for our computational experiments

All the computational experiments are conducted on a Pentium 4 PC with 3.2 GHz CPU, 1 GB RAM and Windows XP oper-
ating system. Six algorithms are implemented and evaluated: (1) our merged genotype pair heuristic, denoted as ‘‘MGP’’, is
implemented in C++, compiled by Visual C++, and linked with CPLEX 9.0 callable library; (2) our greedy heuristic, denoted as
‘‘GHI’’, is implemented in C++ and compiled by g++ compiler; (3) the heuristic algorithm directly imported from Li et al. [20],
denoted as ‘‘PTG’’, is implemented using Borland Delphi 5.0 in Pascal; (4) the semidefinite programming relaxation algorithm
by Huang et al. [18], denoted as ‘‘SDP’’, is implemented using MATLAB; (5) the integer linear programming model by Gusfield
[14], denoted as ‘‘RTIP’’, is implemented in C++, compiled by Visual C++, and linked with CPLEX 9.0 callable library; and (6)
the Clark inference rule algorithm directly imported from Clark [5], denoted as ‘‘HAP’’, is implemented using Fortran. Note
that although HAP is not designed for the pure parsimony criterion, we include it into our experiments since it is one of the
haplotyping algorithms based on statistical models widely used in the community, and thus the error rates of HAP can serve
as a base to compare the practical effectiveness of our proposed HIPP algorithms. Besides these six PHI algorithms, we have
also implemented the basic PolyIP model (i.e. the one without branch and cut techniques) of Brown and Harrower [17].
Although PolyIP is an integer programming formulation with polynomial size which is theoretically better than the exponen-
tial-sized RTIP formulation by Gusfield [14], the results of our implementation indicates that PolyIP takes much more time
than RTIP, even when solving small or medium sized HIPP problems. In fact, it performs the slowest in all of our experiments.
Therefore, we do not include the results of PolyIP in this paper. We have not included the SAT-based HIPP methods such as
SHIPs and RPoly into our computational tests, since their source codes are not publicly available for further modifications to
meet our needs. Moreover, SHIPs and RPoly rely on some state-of-the-art SAT solver (e.g. MiniSAT by Eén and Sörensson,
[27]) and PBO solver (e.g. MiniSAT+ by Eén and Sörensson, [28]), which are very different from the ILP solver (CPLEX) used
by RTIP, PolyIP and MGP. Here in this paper, we focus on the performance of those ILP-based HIPP methods, and leave the
experiments on those SAT-based HIPP methods for future research.
Fig. 4. Illustration on the proposed weight mechanism of GHI.
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We record the computational time for several PHI algorithms in our experiments. Note that the amount of time spent by
an algorithm can not really indicate its actual efficiency, since these algorithms are not implemented using the same pro-
gramming language. However, for the practical purpose, a faster PHI algorithm is usually preferred.

We use the error rate, defined as the proportion of genotypes whose inferred haplotype pairs are different from the ori-
ginal ones, to evaluate the practical effectiveness for several classes of the HIPP algorithms. Take the 3-genotype case in Fig. 1
for example, suppose an HIPP algorithm gives p2, p3, p4 as an answer for resolving genotypes g1, g2, g3, while the original
answer is p2, p3, p5. Then, the error rate for this algorithm is 1/3 since only one (i.e. g3) of the three genotypes is incorrectly
inferred. Since the original inferred haplotype pairs usually can not be obtained in advance, the error rate is highly intrac-
table, case-dependent, and may easily grow to a scale of 30% or more, even for those haplotyping algorithms based on sta-
tistical models by Stephens and Donnelly [12] and Niu et al. [11]. Intuitively, an algorithm that gives smaller error rates is
usually considered to be more effective, although such an algorithm may not be the most effective one at all times.

For those non-optimal HIPP algorithms, we are the first to use the optimality gap, defined as the ratio of the difference in
the number of selected inferred haplotypes obtained by an HIPP algorithm to the minimum number of inferred haplotypes
(i.e. the optimal objective value of an HIPP problem), as a parameter to evaluate their theoretical effectiveness. Take the same
3-genotype example in previous paragraph, the optimal solution p2, p3, p5 selects four haplotypes (i.e. 001, 100, 011, 110),
while the solution p2, p3, p4 by an HIPP algorithm selects five haplotypes (i.e. 001, 100, 011, 010, 111). Therefore, the opti-
mality gap for this HIPP algorithm is (5 � 4)/4 = 25%, representing the objective values by this HIPP algorithm is 25% deviated
from the optimal objective value. Although the HIPP problem is an optimization problem used to model the haplotyping
problem, whether an optimal HIPP algorithm does always give a more effective (e.g. of smaller error rate) solution than a
non-optimal HIPP algorithm or not has never been evaluated. Here we first calculate the optimality gap for the solution
of each non-optimal HIPP algorithm, and then check whether an HIPP algorithm that gives smaller optimality gap is indeed
more effective (i.e. has a smaller error rate).

4.2. Experiments on b2AR gene

We use a sample of the human b2AR gene identified by Drysdale et al. [15] for our testing. Similar experiments have also
been conducted in Stephens and Donnelly [12], Huang et al. [18], Li et al. [20], and Wang and Xu [21]. It contains 18 different
genotypes and 13 SNPs from 121 individuals, and should be resolved by the 10 haplotypes related to asthmatic cohort.
Among all algorithms we have tested, RTIP, MGP, GHI, and HAP all obtain 10 distinct haplotypes on human b2 AR gene data,
thus they are all optimal with respect to the pure parsimony criterion. The error rate of MGP, GHI, and HAP are all 0. How-
ever, RTIP has an error rate 6% due to the existence of multiple optimal solutions. Both SDP and PTG conduct randomized
mechanism which may result in different solutions even for the same genotype matrix. Thus we apply SDP and PTG to solve
this genotype matrix for three times. SDP obtains 12 haplotypes and has an error rate 11% on average. On the other hand, PTG
obtains 10, 11, and 12 haplotypes, which correspond to the error rates of 0%, 17%, and 17%, respectively.

4.3. Experiments on simulated data

We use the program by Hudson [29] to simulate a 2m � n haplotype matrix, and then randomly pair two haplotypes from
these 2m haplotypes to produce an m � n genotype matrix in a way that none of the 2m haplotypes is repeatedly paired.
Similar simulated techniques can also be found in Stephens et al. [10], Niu et al. [11], Gusfield [14], Brown and Harrower
[17], Huang et al. [18], and Wang and Xu [21].

Recombination is a process during the formation of gametes where portions from the paternal and maternal genome are
exchanged. Recombination may cause the haplotypes in offspring to be different from those in their parents, and higher
recombination rate cause more different haplotypes in offspring. We simulate the input genotypes and haplotypes with dif-
ferent recombination rate r to evaluate the effectiveness for several PHI algorithms. In particular, we have tested three
recombination rates: r = 0 (no recombination), r = 4 and r = 16.

For each tested recombination rate (i.e. r = 0, 4, or 16), nine problem sets of different genotype matrix sizes (10 � 10,
20 � 10, 30 � 10, 10 � 20, 20 � 20, 30 � 20, 10 � 30, 20 � 30, and 30 � 30) are simulated, where 30 random test cases for
each problem set have been generated. The size of the largest genotype matrix tested in our experiments (i.e. 30 � 30) is
fairly large, compared with the largest cases, 40 � 10 and 25 � 10, tested in Wang and Xu [21] and Huang et al. [20], respec-
tively. In fact, the number of SNP affects the running time more than the number of genotypes, especially for some algo-
rithms (e.g. RTIP and GHI) that require enumeration of all candidate haplotype pairs.

Two parameters, optimality gap and error rate, for each algorithm in each test case are recorded for evaluation. For each
parameter, we use their average over the 30 test cases of the same problem set to represent its overall performance. Note
that we do not list the optimality gap for the algorithms RTIP and HAP, since RTIP is already optimal and HAP may not resolve
all the genotypes which makes its optimality gap meaningless.

Although the computational time (see Tables 1–3) in our experiments are not for the purpose of efficiency comparison,
the results indicate that all the heuristics (MGP, GHI, and PTG) solve the HIPP very quickly. Among these three heuristics, PTG
is the most efficient algorithm. MGP is the second efficient since it solves two ILPs with sizes much smaller than the size of
RTIP. GHI requires more time than the other two, since it sorts a set of exponential-sized candidate haplotype pairs to select
the best one. On the other hand, both RTIP and SDP require much more time than the others. For our convenience, we only



Table 1
Computational time (in seconds) for cases without recombination (r = 0).

Problem sets RTIP MGP GHI PTG HAP SDP

10 � 10 (30/30) 0.06 0.04 0.02 0.01 0.03 1.58
20 � 10 (30/30) 0.06 0.04 0.03 0.01 0.03 7.69
30 � 10 (30/30) 0.09 0.06 0.05 0.01 0.03 7.42
10 � 20 (30/30) 405.85 0.05 126.42 0.01 0.03 15.75
20 � 20 (30/30) 84.83 0.06 58.65 0.02 0.03 16.71
30 � 20 (30/30) 9.46 0.16 6.85 0.02 0.04 26.02
10 � 30 (26/30) 37.87 0.08 14.95 0.02 0.04 17.72
20 � 30 (27/30) 19.16 0.11 7.70 0.03 0.03 6.95
30 � 30 (28/30) 26.27 0.09 19.71 0.04 0.03 11.98

Table 2
Computational time (in seconds) for recombination rate r = 4 cases.

Problem sets RTIP MGP GHI PTG HAP SDP

10 � 10 (30/30) 0.08 0.06 0.02 0.01 0.04 4.67
20 � 10 (30/30) 0.06 0.05 0.03 0.01 0.03 6.05
30 � 10 (30/30) 0.07 0.06 0.03 0.02 0.03 6.23
10 � 20 (30/30) 3.08 0.20 0.93 0.02 0.04 4.10
20 � 20 (30/30) 4.88 0.06 5.98 0.02 0.04 13.89
30 � 20 (30/30) 2.96 0.12 1.73 0.03 0.02 14.86
10 � 30 (29/30) 15.35 0.16 5.95 0.02 0.04 3.55
20 � 30 (28/30) 61.21 1.08 19.78 0.03 0.03 7.53
30 � 30 (30/30) 26.39 0.17 15.26 0.04 0.08 13.74

Table 3
Computational time (in seconds) for recombination rate r = 16 cases.

Problem sets RTIP MGP GHI PTG HAP SDP

10 � 10 (30/30) 0.05 0.06 0.01 0.01 0.03 2.62
20 � 10 (30/30) 0.06 0.04 0.02 0.02 0.04 5.71
30 � 10 (30/30) 0.11 0.04 0.05 0.02 0.04 24.73
10 � 20 (30/30) 377.54 0.08 29.05 0.02 0.03 4.88
20 � 20 (30/30) 0.61 0.08 0.25 0.03 0.03 8.96
30 � 20 (30/30) 1.32 0.16 1.05 0.04 0.03 20.26
10 � 30 (30/30) 317.46 292.35 18.54 0.02 0.03 8.02
20 � 30 (30/30) 2681.88 0.19 60.52 0.04 0.03 12.19
30 � 30 (30/30) 12.62 0.18 4.99 0.06 0.03 23.64
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record the cases solvable within two hours for each algorithm. Although SDP can be terminated in two hours in our tests,
RTIP may take longer. Thus we list the number of cases solvable within two hours by RTIP. For example, 10 � 30 (26/30)
in the first column of Tables 1, 4, and 7 indicates that only 26 out of the 30 test cases for the 10 � 30 problem sets are
solvable by RTIP within two hours for the cases without recombination. Note that if we include those 10 � 30, 20 � 30,
and 30 � 30 test cases that take up to 2 h of computational time in Tables 1 and 2, the average solution time for some
solution methods (e.g. RTIP, GHI, and SDP) will be longer than 7200 s (i.e. 2 h). In general, the complexity of an HIPP problem
depends more on the number of heterozygous sites, and problem sets of larger n may contain more heterozygous sites and
thus usually require more time to solve. On the other hand, problem sets of larger m may not necessarily take more solution
Table 4
Optimality gaps (in %) for cases without recombination (r = 0).

Problem sets MGP GHI PTG SDP

10 � 10 (30/30) 2.34 4.29 3.45 7.20
20 � 10 (30/30) 11.91 10.93 5.29 11.83
30 � 10 (30/30) 6.78 5.99 2.95 12.87
10 � 20 (30/30) 4.72 9.15 5.31 18.77
20 � 20 (30/30) 13.59 10.16 7.27 46.64
30 � 20 (30/30) 17.32 14.02 10.27 62.38
10 � 30 (26/30) 2.87 6.32 9.33 31.85
20 � 30 (27/30) 12.18 12.40 11.80 47.61
30 � 30 (28/30) 22.29 17.89 12.98 66.60



Table 5
Optimality gaps (in %) for recombination rate r = 4 cases.

Problem sets MGP GHI PTG SDP

10 � 10 (30/30) 2.64 4.12 5.09 4.95
20 � 10 (30/30) 8.98 6.11 5.14 6.25
30 � 10 (30/30) 9.46 7.78 5.43 10.51
10 � 20 (30/30) 4.15 8.83 11.10 25.74
20 � 20 (30/30) 14.74 10.20 13.48 46.54
30 � 20 (30/30) 17.08 14.07 19.11 50.10
10 � 30 (29/30) 4.79 9.87 13.88 37.58
20 � 30 (28/30) 11.12 12.05 13.66 50.96
30 � 30 (30/30) 16.04 14.80 16.73 67.63

Table 6
Optimality gaps (in %) for recombination rate r = 16 cases.

Problem sets MGP GHI PTG SDP

10 � 10 (30/30) 6.32 6.77 11.73 8.83
20 � 10 (30/30) 14.24 9.47 17.09 13.73
30 � 10 (30/30) 16.08 12.07 21.34 15.31
10 � 20 (30/30) 3.52 11.05 19.71 25.74
20 � 20 (30/30) 10.00 14.89 22.05 43.54
30 � 20 (30/30) 12.00 13.17 18.19 43.82
10 � 30 (30/30) 3.65 15.22 17.69 29.86
20 � 30 (30/30) 8.89 16.67 23.14 48.85
30 � 30 (30/30) 12.61 13.65 23.80 58.65

Table 7
Error rates (in %) for cases without recombination (r = 0).

Problem sets RTIP MGP GHI PTG HAP SDP

10 � 10 (30/30) 13.33 14.67 14.33 14.00 18.67 15.67
20 � 10 (30/30) 6.00 11.67 10.83 9.83 15.83 9.33
30 � 10 (30/30) 4.00 5.89 5.00 6.11 15.56 9.00
10 � 20 (30/30) 28.67 32.33 33.33 28.67 37.00 43.33
20 � 20 (30/30) 13.83 29.00 21.67 16.67 23.17 34.83
30 � 20 (30/30) 7.78 17.67 15.78 10.56 26.00 30.22
10 � 30 (26/30) 44.23 55.00 52.31 48.85 49.23 66.15
20 � 30 (27/30) 23.89 39.63 31.30 36.48 33.33 50.19
30 � 30 (28/30) 14.17 38.81 28.21 26.90 33.69 50.00
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time. There is also no clear relationship between the computational time and the value of r in literature and from our testing
results.

Tables 4 and 7 record the average performance in the optimality gap and error rate for different algorithms when there is
no recombination (i.e. r = 0). The results for the cases with recombination rate r = 4 and r = 16 are summarized in Tables 5, 8,
6, 9, respectively.

For the cases without recombination (i.e. r = 0), among those non-optimal algorithms, the optimality gap in Table 4 shows
that PTG performs the best, GHI performs the second, MGP performs the third, and SDP performs the fourth. Moreover, the
optimality gap of SDP increases dramatically for larger cases. In terms of error rate, RTIP has the smallest error rate than all
Table 8
Error rates (in %) for recombination rate r = 4 cases.

Problem sets RTIP MGP GHI PTG HAP SDP

10 � 10 (30/30) 26.33 25.33 22.67 26.67 24.33 24.67
20 � 10 (30/30) 10.50 15.50 10.83 13.00 19.67 13.17
30 � 10 (30/30) 6.33 10.00 8.00 8.33 18.44 9.56
10 � 20 (30/30) 39.00 46.33 42.67 45.33 52.67 48.33
20 � 20 (30/30) 18.67 33.83 27.67 28.67 34.00 46.50
30 � 20 (30/30) 11.67 24.11 18.78 22.00 24.44 36.11
10 � 30 (29/30) 38.62 54.83 51.72 52.76 45.86 66.21
20 � 30 (28/30) 28.21 44.64 37.50 34.64 39.82 57.50
30 � 30 (30/30) 15.11 28.44 22.89 24.44 30.22 47.22



Table 9
Error rates (in %) for recombination rate r = 16 cases.

Problem sets RTIP MGP GHI PTG HAP SDP

10 � 10 (30/30) 24.33 31.00 27.33 35.67 29.33 33.00
20 � 10 (30/30) 20.17 27.8 23.00 28.67 28.83 24.33
30 � 10 (30/30) 16.00 20.33 16.78 28.11 24.78 22.44
10 � 20 (30/30) 40.00 44.00 48.33 57.67 59.67 57.67
20 � 20 (30/30) 24.83 34.33 29.83 42.50 40.00 50.83
30 � 20 (30/30) 20.33 33.33 27.22 36.22 31.89 44.78
10 � 30 (30/30) 57.00 56.67 57.00 63.33 59.33 73.00
20 � 30 (30/30) 35.17 47.00 41.67 47.50 49.50 58.17

Table 10
Comparative performance of six PHI algorithms.

Performance index RTIP MGP GHI PTG HAP SDP

Time (overall) 5 2 3 1 – 4
Optimality gap (r = 0) – 3 2 1 – 4
Optimality gap (r = 4 or 16) – 1 2 3 – 4
Error rate (r = 0) 1 4 3 2 5 6
Error rate (r = 4) 1 4 2 3 5 6
Error rate (r = 16) 1 3 2 5 4 6
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other algorithms in all the cases without recombination (see Table 7), then PTG performs the second, GHI performs the third,
MGP performs the fourth, HAP performs the fifth, and finally SDP performs the sixth. All the algorithms have consistent per-
formance on both the optimality gaps and error rates for these cases without recombination. This indicates the pure parsi-
mony criterion does serve its purpose for cases without recombination, so that algorithms that have smaller optimality gaps
tend to have smaller error rates.

For the cases with recombination (i.e. r = 4 or r = 16), among those non-optimal algorithms, the optimality gap in Tables 5
and 6 shows that MGP performs the best, GHI performs slightly worse than MGP, PTG performs the third, whereas SDP has
smaller optimality gap for cases up to 10 SNPs but the gap increases dramatically for larger cases. In terms of error rate (see
Tables 8 and 9), RTIP again has the smallest error rate than all other algorithms in all the cases with recombination. For algo-
rithm A and B, let A 	 B represent A has smaller error rate than B. In general, GHI 	 PTG 	MGP 	 HAP 	 SDP for the cases of
r = 4, and GHI 	MGP 	 HAP 	 PTG 	 SDP for the cases of r = 16. From Tables 7–9, we also find that the error rates are larger
for cases with the same number of SNPs but fewer genotypes, due to the lack of sufficient information to infer haplotypes
(similar conclusion can also be found in Huang et al. [18] and Wang and Xu [21]).

Although these algorithms do not perform consistently on the optimality gaps and error rates for cases with recombina-
tion, our heuristics GHI and MGP do perform very well consistently, and have better effectiveness in most cases, especially
for cases with recombination rates. In particular, GHI and MGP have better error rates than HAP in most cases. Since HAP is a
widely used haplotyping algorithm in the community, this indicates our proposed algorithms are also practically useful and
competitive to the other algorithms based on statistical models. On the other hand, PTG performs very well for cases without
recombination rate, but has consistently worse theoretical and practical effectiveness than GHI and MGP, especially when
the recombination rate increases.

In summary, Table 10 lists the comparative performance for these six PHI algorithms, and ranks their relative perfor-
mance along a given parameter (time, optimality gap, or error rate); as the relative performance worsens, the ranking gets
higher. From the results, we recommend RTIP for researchers who can bear with longer running time but seek a solution
with the smallest error rates. On the other hand, PTG is recommended for researchers seeking a very quick solution with
promising quality. For researchers seeking a better solution within a promising schedule, we recommend both GHI and MGP.

5. Conclusions

This paper focuses on issues in solving the PHI problem based on pure parsimony criterion (HIPP). The major contribu-
tions of this paper are in two folds. First, we propose two new heuristic algorithms (MGP and GHI) based on the concept of
compatible genotype pairs and a weight mechanism that takes the Clark’s inference rule into consideration for selecting
better candidate haplotypes in a greedy fashion. Approximated lower and upper bounds for the objective value of the HIPP
problem can also be derived from the properties of the compatibility graph. Second, we conduct extensive computational
experiments for six PHI algorithms on one biological dataset and several simulated datasets. Our experiments are more
complete than others in the literature since we evaluate the optimality gap and error rate, which cover both the theoretical
and practical effectiveness of HIPP algorithms at the same time. Our results show the pure parsimony criterion does serve its
purpose in providing a practically good HIPP solution, since a HIPP algorithm that produces smaller optimality gaps does
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usually give smaller error rates. Since seeking the exact optimal HIPP solution is too time-consuming, our results encourage
the pursuit of developing more efficient and effective HIPP algorithms. To this end, our proposed heuristics (MGP and GHI)
can successfully give very good solutions in a shorter time, and are especially effective for cases with larger recombination
rates.

For future research, we suggest to evaluate the error rates for those SAT-based HIPP methods such as SHIPs and RPoly. We
also encourage researchers to investigate or improve their HIPP methods, based on the compatibility graph and weight
mechanism used by MGP and GHI, as proposed in this paper.
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